If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+n+-2730=0
We add all the numbers together, and all the variables
3n^2+n=0
a = 3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*3}=\frac{-2}{6} =-1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*3}=\frac{0}{6} =0 $
| 3n2+n+-2730=0 | | 2/5x-2=3/5x-5 | | 2/5x-2=3/5x | | 7c+5=7c-2 | | 2x/3+1=7x | | (50*(8-x))/2+50x=400 | | 25x-200=25•(x-8) | | -8(4n+8)=0 | | d^2+12d-864=0 | | 7(x-4)=-63 | | 3(2x+6)-12=54 | | 0.55x+0.05(20-x)=0.10(30) | | 4-5(7-(9y-5))=0 | | 5x-1(1x+4)=10-2(1x-8) | | 7x-1-8x=-10 | | 5q-1/6-3q-12/5=2 | | .30(p+6)-0.70(p+8)=-5.4 | | 8x+13=11x+13 | | 3(3y+1)=9(y-2)+21 | | 0=2x^2+x-16 | | 6-(2z+4)=5-z | | 4(2w-1)=-10(1w-5) | | 10x-(7x-4)=16 | | -6(2b+1)+(13b-7-)=0 | | -6(2b+1)+(13b-7=0 | | (51+x)/9=4.5 | | 2(x-1)-6x=10-2(x+4) | | -(-6k+1)+2(-3k+4)=7k+7 | | 8(=u+7) | | 8=(u+7) | | 10x=2.4 | | 8(x+1)=1+8x |